Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(2)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393141

RESUMO

Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.


Assuntos
Naja , Proteômica , Toxinas Biológicas , Serpentes Peçonhentas , Proteômica/métodos , Proteoma/análise , Estrutura Quaternária de Proteína , Venenos Elapídicos/química , Toxinas Biológicas/análise , Venenos de Serpentes , Fosfolipases A2/metabolismo , Antivenenos/farmacologia
2.
J Pediatr Urol ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38365477

RESUMO

BACKGROUND: Nephroblastoma, also more commonly known as Wilms tumor (WT), is a common childhood malignancy that connects tumorigenesis and organ development in the kidney. OBJECTIVE: The current study focused on the effect of lncRNA FTX in nephroblastoma. STUDY DESIGN: Expression of lncRNA FTX in nephroblastoma tissues and cells was determined. The expression location of lncRNA FTX was detected by FISH. The binding of lncRNA FTX and miR-215-5p with Ago2 was verified by RIP. Following gain- and loss-of-function approaches, the crucial role of lncRNA FTX and miR-215-5p in nephroblastoma cell functions was measured with the involvement of the PI3K/AKT pathway. RESULTS: LncRNA FTX was elevated and miR-215-5p was declined in nephroblastoma. Silencing of lncRNA FTX or mimic of miR-215-5p inhibited the malignant properties of nephroblastoma cells. LncRNA FTX was localized in the cytoplasm and might bind miR-215-5p. LncRNA FTX promoted the malignant features of nephroblastoma cells by inhibiting miR-215-5p through activating of the PI3K/AKT pathway. CONCLUSIONS: LncRNA FTX is capable of accelerating nephroblastoma development in vitro by reducing miR-215-5p through activating of the PI3K/AKT pathway, indicating LncRNA FTX may possibly a future target for the diagnosis and treatment of nephroblastoma. SUMMARY FIGURE.

3.
Front Biosci (Landmark Ed) ; 29(1): 25, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287828

RESUMO

OBJECTIVE: This study investigated the role of long non-coding RNAs (lncRNAs) FTX in vascular endothelial cells (ECs). METHODS: Transfection of FTX/Sh-FTX with lentivirus was used to construct gain and loss of function cell models in human umbilical vein endothelial cells (HUVECs). Liquid chromatography-mass spectrometry was used for quantitative proteomics analysis of differentially expressed proteins (DEPs). Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein interaction analysis were further conducted to investigate the key molecules and pathways that respond to lncRNA-FTX. RESULTS: In the proteomics analysis, 3308 quantifiable proteins were identified, 64 proteins were upregulated and 103 were downregulated when lncRNA FTX was overexpressed. Additionally, 100 proteins were upregulated and 147 were downregulated when lncRNA FTX was knocked down. Functional clustering analysis of DEPs demonstrated that lncRNA FTX was involved in multiple biological processes. Among them, the expression of complement 3 (C3), cartilage oligomeric matrix protein (COMP), faciogenital dysplasia 6 (FGD6), and tissue inhibitor of metalloproteinase 1 (TIMP1) was significantly upregulated when lncRNA FTX was knocked down, and significantly downregulated when lncRNA FTX was overexpressed. They are associated with inflammation, collagen deposition, angiogenesis, and regulation of liver stem cell differentiation, which may be associated with the occurrence and development of liver fibrosis. CONCLUSIONS: The study demonstrated that lncRNA FTX might play a potential role in ECs and contribute to the development of liver fibrosis. Thus, FTX may be a promising target for the prevention or reversal of liver fibrosis.


Assuntos
RNA Longo não Codificante , Humanos , Células Endoteliais/metabolismo , Cirrose Hepática , Proteômica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inibidor Tecidual de Metaloproteinase-1
4.
Folia Neuropathol ; 61(3): 291-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818689

RESUMO

INTRODUCTION: Long non-coding RNAs (lncRNAs) participate in the process of neuropathic pain (NP). Herein, the goal of this research was to examine the roles of lncRNA five prime to XIST (FTX) in influencing chronic constriction injury (CCI)-induced NP. MATERIAL AND METHODS: We have established a rat CCI model to simulate NP in vivo. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect mRNA levels of FTX, microRNA (miR)-320a, and runt-related transcription factor 2 (RUNX2) in the spinal cord. This was followed by subsequent regulation of FTX or miR-320a levels in vivo by intrathecal injection of overexpression FTX or miR-320a mimic lentivirus. The behaviour of rat NP the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). Enzyme-linked immunosorbent assay (ELISA) was used to assess the secretion of pro-inflammatory and anti-inflammatory factors in the spinal cord tissue. A correlation between FTX and miR-320a, and RUNX2 was validated by luciferase reporter. RESULTS: FTX levels were reduced in CCI rats ( p < 0.05), and miR-320a was a direct target of FTX. Overexpression of FTX typically reduced PWL and PWT as well as neuroinflammation thus alleviating NP ( p < 0.05). However, increasing miR-320a reversed the alleviation of FTX on NP, increased PWL and PWT, and promoted neuroinflammation ( p < 0.05). Additionally, RUNX2, which is a miR-320a target gene, was significantly repressed in CCI rats and its expression was increased by FTX, however, this increase was attenuated by elevated miR-320a ( p < 0.05). CONCLUSIONS: In the CCI-induced NP rat model, FTX attenuates NP and neuroinflammation by regulating the miR-320a/RUNX2 axis. This provides a new vision for NP treatment.


Assuntos
MicroRNAs , Neuralgia , RNA Longo não Codificante , Animais , Ratos , Constrição , Subunidade alfa 1 de Fator de Ligação ao Core , MicroRNAs/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , RNA Longo não Codificante/genética
5.
Clin. transl. oncol. (Print) ; 25(10): 2812-2831, oct. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-225062

RESUMO

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells (AU)


Assuntos
Humanos , Feminino , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/genética
6.
Stem Cell Res Ther ; 14(1): 109, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106382

RESUMO

BACKGROUND: Regulating the pluripotency of human dental pulp stem cells (hDPSCs) is key for the self-repair of injured dental pulp. We previously found that OCT4A promotes the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs). Recent studies have shown the interaction between OCT4A and lncRNAs in pluripotency maintenance of various stem cells. The aim of this study was to explore the underlying roles and mechanisms of OCT4A and its related lncRNAs in the proliferation and multidirectional differentiation of hDPSCs in an inflammatory microenvironment. METHODS: Human lncRNA microarrays were applied to screen out the differentially expressed lncRNAs in hDPSCs between the OCT4A-overexpressing and vector groups. Lipopolysaccharide (LPS) was used to simulate the inflammatory microenvironment. The effects of OCT4A and the lncRNA FTX on the proliferation and multidifferentiation of hDPSCs were observed by the CCK-8 assay, EdU staining, real-time PCR, western blotting, and Alizarin red and oil red O staining. Bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays were performed to clarify the targeted mechanism of OCT4A on FTX. The regulation by FTX of the expression of OCT4A and its downstream pluripotent transcription factors SOX2 and c-MYC was further detected by real-time PCR and western blotting. RESULTS: The microarray results showed that 978 lncRNAs (250 of which were upregulated and 728 downregulated) were potentially differentially expressed genes (fold change ≥ 2, P < 0.05). LPS stimulation attenuated the self-renewal of hDPSCs. OCT4A enhanced the cell proliferation and multidifferentiation capacities of hDPSCs in an inflammatory microenvironment, while FTX exhibited the opposite effects. OCT4A negatively regulated FTX function by binding to specific regions on the FTX promoter, thereby inhibiting the transcription of FTX. Moreover, overexpression of FTX downregulated the expression of OCT4A, SOX2 and c-MYC, whereas knockdown of FTX facilitated their expression. CONCLUSIONS: OCT4A was found to be a crucial factor maintaining the self-renewal of hDPSCs by transcriptionally targeting FTX in an inflammatory microenvironment. Moreover, we proposed a novel function of FTX in negatively regulating the pluripotency and multilineage differentiation capacity of hDPSCs. The hierarchical organization between OCT4A and FTX expanded the understanding of the network between transcription factors and lncRNAs in fine-tuning the pluripotency/differentiation balance of adult stem cells, and provided prospective targets for optimizing dental-derived stem cell sources for regenerative endodontics.


Assuntos
RNA Longo não Codificante , Adulto , Humanos , Diferenciação Celular , Proliferação de Células/genética , Células Cultivadas , Polpa Dentária , Lipopolissacarídeos/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
7.
Clin Transl Oncol ; 25(10): 2812-2831, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37095425

RESUMO

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/ß-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3ß, TGF-ß1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , Transdução de Sinais/genética , Fatores de Transcrição SOXC/metabolismo
8.
Neuroscience ; 526: 48-60, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37121382

RESUMO

Epilepsy is a disabling and drug-refractory neurological disorder. Long non-coding RNAs (lncRNAs) play a vital role in neuronal function and central nervous system development. This study aimed to explore the regulatory mechanism of lncRNA five prime to Xist (FTX) in cell ferroptosis following epilepsy to provide a theoretical foundation for epilepsy management. Hippocampal neurons were isolated from brain tissues of healthy male SD rats, and an in vitro cell model of epilepsy was established using magnesium-free (MGF) induction. Patch-clamp technique was used to determine the action potentials of neurons. Neuronal viability and apoptosis were assessed by CCK-8 assay and flow cytometry. Levels of FTX, miR-142-5p, and GABPB1 were determined by RT-qPCR and Western blot, respectively. The cellular location of FTX was predicted and validated by RNA immunoprecipitation. Dual-luciferase assay verified targeting relationships among FTX, miR-142-5p, and GAPBP1. Levels of ferroptosis indicators and ferroptosis-related proteins were measured using Western blot and corresponding kits. Neuronal ferroptosis and apoptosis increased after MGF induction, and FTX was weakly-expressed in MGF-induced neurons. FTX overexpression attenuated ferroptosis and apoptosis of MGF-induced neurons. miR-142-5p was upregulated after MGF induction and downregulated after FTX overexpression, and FTX targeted miR-142-5p. miR-142-5p overexpression partially negated the inhibitory action of FTX overexpression on ferroptosis of MGF-induced neurons. FTX regulated GABPB1 expression by targeting miR-142-5p. In conclusion, FTX overexpression mitigated ferroptosis of MGF-induced neurons through the miR-142-5p/GABPB1 axis. In conclusion, lncRNA FTX inhibited ferroptosis of MGF-induced rat hippocampal neurons via the miR-142-5p/GABPB1 axis.


Assuntos
Epilepsia , Ferroptose , MicroRNAs , RNA Longo não Codificante , Ratos , Masculino , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Apoptose/genética , Epilepsia/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo
9.
Proteome Sci ; 21(1): 2, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604692

RESUMO

OBJECTIVE: This study aims to decode the proteomic signature of cardiomyocytes in response to lncRNA Ftx knockdown and overexpression via proteomic analysis, and to study the biological role of lncRNA Ftx in cardiomyocytes.  METHODS: The expression level of the lncRNA Ftx in cardiomyocytes cultured in vitro was intervened, and the changes in protein levels in cardiomyocytes were quantitatively detected by liquid chromatography-mass spectrometry. The key molecules and pathways of the lncRNA-Ftx response were further examined by GO, KEGG, and protein interaction analysis. RESULTS: A total of 2828 proteins are quantified. With a 1.5-fold change threshold, 32 upregulated proteins and 49 downregulated proteins are identified in the lncRNA Ftx overexpression group, while 67 up-regulated proteins and 54 down-regulated proteins are identified in the lncRNA Ftx knockdown group. Functional clustering analysis of differential genes revealed that the lncRNA Ftx is involved in regulating cardiomyocyte apoptosis and ferroptosis and improving cellular energy metabolism. In addition, Hub genes such as ITGB1, HMGA2, STAT3, GSS, and LPCAT3 are regulated downstream by lncRNA Ftx. CONCLUSION: This study demonstrates that lncRNA Ftx plays a vital role in cardiomyocytes and may be involved in the occurrence and development of various myocardial diseases. It provides a potential target for clinical protection of the myocardium and reversal of myocardial fibrosis.

10.
Biomed Pharmacother ; 153: 113446, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076561

RESUMO

Long non-coding RNAs (LncRNAs) are involved in several types of cancer and participate actively in tumorigenesis and disease progression. LncRNA FTX is the transcription product of the FTX gene located at the X-inactivation center (Xic). LncRNA FTX has been shown to regulate cancer cell proliferation, migration, and aberrant metabolism, as well as increase tumor growth and metastasis in vivo. Herein, we summarized currently available research on the interaction between LncRNA FTX and associated molecules and signaling pathways in malignant tumors to better understand the biological roles of LncRNA FTX in cancer progression.


Assuntos
Neoplasias , RNA Longo não Codificante , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética
11.
Oncol Rep ; 48(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35866591

RESUMO

The present study aimed to explore the role of long non­coding (lnc)RNA FTX and ubiquitin­conjugating enzyme E2C (UBE2C) in promoting the progression of renal cell carcinoma (RCC) and the underlying regulatory mechanism. Relative levels of lncRNA FTX, UBE2C, AKT, CDK1 and CDK6 in RCC cell lines were detected by reverse transcription­quantitative (RT­q). Expression levels of UBE2C, phosphorylated (p)­AKT/AKT, p­CDK1/CDK1 and p­CDK6/CDK6 in RCC and paracancerous specimens and RCC cells were measured by western blot or immunohistochemistry assay. In addition, the proliferative rate, cell viability, cell cycle progression, migratory rate and invasive rate of RCC cells overexpressing lncRNA FTX by lentivirus transfection were determined by a series of functional experiments, including the colony formation assay, MTT assay, flow cytometry, Transwell assay and wound healing assay. The targeted binding relationship in the lncRNA FTX/miR­4429/UBE2C axis was validated by dual­luciferase reporter assay. By intervening microRNA (miR)­4492 and UBE2C by the transfection of miR­4429­mimics or short interfering UBE2C­2, the regulatory effect of lncRNA FTX/miR­4429/UBE2C axis on the progression of RCC was evaluated. Finally, a xenograft model of RCC in nude mice was established by subcutaneous implantation, thus evaluating the in vivo function of lncRNA FTX in the progression of RCC. The results showed that lncRNA FTX and UBE2C were upregulated in RCC specimens and cell lines. The overexpression of lncRNA FTX in RCC cells upregulated UBE2C. In addition, the overexpression of lncRNA FTX promoted the cell viability and proliferative, migratory and invasive capacities of RCC cells and accelerated the cell cycle progression. A dual­luciferase reporter assay validated that lncRNA FTX exerted the miRNA sponge effect on miR­4429, which was bound to UBE2C 3'UTR. Knockdown of UBE2C effectively reversed the regulatory effects of overexpressed lncRNA FTX on the abovementioned phenotypes of RCC cells. In the xenograft model of RCC, the mice implanted with RCC cells overexpressing lncRNA FTX showed a larger tumor size and higher tumor weight than those of controls, while the in vivo knockdown of UBE2C significantly reduced the size of RCC lesions, indicating the reversed cancer­promoting effect of lncRNA FTX. Overall, the present study showed that lncRNA FTX was upregulated in RCC and could significantly promote the proliferative, migratory and invasive capacities, enhancing the viability and accelerating the cell cycle progression of RCC cells by exerting the miRNA sponge effect on miR­4429 and thus upregulating UBE2C. lncRNA FTX and UBE2C are potential molecular biomarkers and therapeutic targets of RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Enzimas de Conjugação de Ubiquitina , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
12.
Toxicon ; 216: 11-14, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772507

RESUMO

Snake venoms are mainly composed of proteins and peptides (venom toxins). The venom transcriptomes and proteomes have been extensively investigated; however, venom toxin-toxin interactions remain poorly characterized. We detected the interaction of venom Asp49-PLA2 and 3FTx using biochemical and computational approaches. A stable structure of Asp49-PLA2-3FTx was identified, and the interface of Asp49-PLA2 and 3FTx was analyzed. The approaches will shed light on understanding the venom complexity and deciphering the synergistic effects of venom toxins.


Assuntos
Venenos Elapídicos , Toxinas Biológicas , Venenos Elapídicos/química , Fosfolipases A2/toxicidade , Proteoma/química , Venenos de Serpentes/toxicidade , Toxinas Biológicas/toxicidade
13.
Neurotox Res ; 40(2): 542-552, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344194

RESUMO

LncRNA five prime to Xist (FTX) has been identified to exert a protective effect in multiple diseases. However, whether and how FTX attenuates cerebral ischemia-reperfusion injury (CI/RI) is still unclear. To simulate CI/RI, an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) HT22 cell model and an in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) Sprague-Dawley rat model were respectively constructed. In CI/RI plasma samples, OGD/R-challenged HT22 cells, and brain tissues from MCAO/R rats, FTX and mouse double minute 4 (MDM4) expressions were substantially decreased while miR-186-5p abundance was evidently increased. It was also revealed that FTX obviously improved neuronal damage induced by OGD/R through increasing proliferation, reducing apoptosis, and alleviating oxidative stress in OGD/R-challenged HT22 cells. Additionally, FTX positively regulated MDM4 level in OGD/R-treated HT22 cells as a sponge of miR-186-5p. Moreover, miR-186-5p upregulation or MDM4 suppression restored the inhibitory effects of FTX upregulation on OGD/R-triggered neuronal damage in HT22 cells. Therefore, these results suggest that FTX might ameliorate CI/RI by regulating the miR-186-5p/MDM4 pathway, providing a new target for stroke impairment treatment.


Assuntos
Isquemia Encefálica , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/metabolismo , Glucose/farmacologia , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Oxigênio , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo
14.
BMC Cancer ; 22(1): 61, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027040

RESUMO

BACKGROUND: To observe the clinicopathological and prognostic value of long non-coding RNA five prime to X inactive specific transcript (lncFTX) in multiple tumors. METHODS: Eligible studies for lncFTX were identified by searching PubMed, Embase, Web of Science and Cochrane Library databases from inception to December 01, 2020. Stata 12.0 software was used to calculate the odds ratio (OR)/hazard ratio (HR) and 95% confidence interval (95% CI). We used The Cancer Genome Atlas (TCGA) dataset to further investigate the differential expression and prognostic value of lncFTX. RESULTS: We included 11 studies involving a total of 1633 patients. The results showed that the expression of lncFTX was positively associated with advanced TNM stage (III-IV versus I-II) (OR = 2.30, 95% CI: 1.74-3.03, P < 0.05), lymph nodes metastasis (OR = 3.01, 95% CI: 2.00-4.52, P < 0.05), distant metastasis (OR = 3.68, 95% CI: 2.13-6.34, P < 0.05), and cancer mortality (HR = 1.83, 95% CI: 1.20-2.81, P < 0.05). However, the expression of lncFTX was not associated with tumor differentiation (poor differentiation versus well or moderate differentiation) and vessel invasion of cancer. Subgroup analysis showed that the higher lncFTX expression was associated with shorter overall survival in cancer patients, regardless of the sample size and cancer type. No publication bias was found, and the sensitivity analysis results suggested that the main findings were robust. Elevated expression and prognostic significance of FTX were confirmed using TCGA dataset. CONCLUSIONS: This study found that the expression of lncFTX was positively associated with advanced tumor node metastasis (TNM) stage, lymph nodes, distant metastasis and, cancer mortality, suggesting that lncFTX might be a potential prognostic biomarker for tumors.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Metástase Linfática , Masculino , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
15.
BMC Biol ; 20(1): 4, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996434

RESUMO

BACKGROUND: The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. RESULTS: Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. CONCLUSIONS: We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.


Assuntos
Elapidae , Venenos de Serpentes , Animais , Venenos Elapídicos/genética , Elapidae/genética , Evolução Molecular , Venenos de Serpentes/química , Venenos de Serpentes/genética , Venenos de Serpentes/toxicidade , Transcriptoma
16.
Neuropsychiatr Dis Treat ; 17: 3617-3625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924755

RESUMO

BACKGROUND: Long non-coding RNAs (lnc-RNAs) and microRNAs (miRNAs) play key roles in the development of stroke. However, the role of lncRNA FTX in stroke is limited known. METHODS: Real-time polymerase chain reaction (real-time PCR) assays were used to measure the expression of lncRNA FTX, miR-342-3p and SPI1. Western blot assays were employed to examine SPI1 protein expression. The cell viability was measured by CCk8 assay. Cell migration was detected by wound healing assays and transwell assays. Angiogenesis was evaluated by matrigel tube formation assays. The interaction between lncRNA FTX, miR-342-3p and SPI1 was confirmed by site-directed mutagenesis and luciferase assays. RESULTS: The expression of lncRNA FTX was down-regulated in blood sample from stroke patients, MAO mice tissues and OGD/R treated BMECs. Overexpression of lncRNA FTX could increase the cell viability, migration and angiogenesis in OGD/R treated BMECs. LncRNA FTX could act as a ceRNA for miR-342-3p. Furthermore, miR-342-3p inhibition increased migration and angiogenesis in OGD/R-induced BMECs. Dual-luciferase reporter assay verified that SPI1 was a target of miR-342-3p. CONCLUSION: In summary, lncRNA FTX enhanced the angiogenesis in stroke by acting as a sponge of miR-342-3p to regulate the expression of SPI1 level.

17.
Ann Transl Med ; 9(17): 1369, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733921

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have recently been found to be vital regulators of various cancers, including colorectal cancer (CRC). It has been previously reported that the dysregulated expression of lncRNA Five prime to Xist (FTX) is involved in carcinogenesis. However, the role of lncRNA FTX in the progression of CRC is still unclear. METHODS: Fluorescence in situ hybridization (FISH) was used to detect the expression of lncRNA FTX and miR-214-5p in CRC tissues. Cell Counting Kit-8 assay, transwell assay, wound-healing assay, and proliferation assay were used to explore the function of lncRNA FTX in CRC cells. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and luciferase reporter assay were used to confirm the relationship between lncRNA FTX and miR-214-5p-jagged canonical Notch ligand 1 (JAG1). We further explored the role of lncRNA FTX in vivo using xenograft tumor assay. RESULTS: lncRNA FTX was found to be upregulated in CRC tissues by FISH. The downregulation of endogenous lncRNA FTX expression inhibited CRC cell proliferation, migration, and invasion. Mechanistically, lncRNA FTX sequestered miR-214-5p and thus released its repression on JAG1, driving the malignant progression of CRC. CONCLUSIONS: These findings give rise to a new perspective, the lncRNA FTX-miR-214-5p-JAG1 regulatory axis, in exploring the cancer-promoting mechanism of lncRNA FTX in CRC.

18.
Bioengineered ; 12(2): 11622-11633, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34720057

RESUMO

Long non-coding RNA (lncRNA) five prime to Xist (FTX) exerts important functions in human cancer, while its role in retinoblastoma (RB) remains unclear. This study aimed to investigate the role of FTX in RB. The expression levels of FTX were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) staining and colony formation assays. Cell migration and invasion were detected by Transwell assay. The relationship among FTX, microRNA-320a (miR-320a) and with-no-lysine kinase 1 (WNK1) was also investigated. In the present study, we found that the expression levels of FTX were notably elevated in RB tissues and cancer cell lines. Overexpression of FTX exacerbated the aggressive phenotypes (cell proliferation, migration and invasion) of RB cells. Downregulation of miR-320a obviously attenuated the inhibitory effects of knockdown of FTX in RB malignant phenotypes, and knockdown of WNK1 also reversed the impacts of miR-320a inhibitor on malignant phenotypes. In vivo experiments further confirmed that knockdown of FTX efficiently prevents tumor growth in vivo. Our results revealed that FTX promoted RB progression by targeting the miR-320a/WNK1 axis (graphical abstract), suggesting that FTX might be a novel therapeutic target for RB.


Assuntos
Progressão da Doença , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Retinoblastoma/genética , Retinoblastoma/patologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Fenótipo , RNA Longo não Codificante/genética
19.
Am J Transl Res ; 13(8): 8833-8846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539998

RESUMO

The increased proliferation and migration of airway smooth muscle cells (ASMCs) are essential factors in the development of asthma. Long noncoding RNAs (lncRNAs) play key roles in the pathogenesis of various diseases, including asthma. A growing body of evidence indicates that lncRNA FTX regulates proliferation and migration in multiple cell types and the progression of various diseases. However, the role of FTX in asthma is still not yet fully understood. Therefore, we explored the role of FTX in the proliferation and migration of ASMCs stimulated by platelet-derived growth factor BB (PDGF-BB) in vitro, as well as the underlying molecular mechanisms. Here, it is demonstrated that the expression of FTX in ASMCs treated with PDGF-BB is significantly up-regulated, and FTX knockout effectively represses the proliferation and migration and promotes the apoptosis of ASMCs induced by PDGF-BB. Mechanistically, FTX can inhibit the proliferation and migration of ASMCs caused by PDGF-BB by targeting miR-590-5p, and FTX over-expression reverses the inhibitory effect. Furthermore, JAK2 is a direct target of the FTX/miR-590-5p signal axis, the over-expression of which reverses the inhibitory effect on the proliferation and migration and the apoptosis-inducing effect of miR-590-5p in ASMCs. Collectively, these results highlight the crucial regulatory role of the FTX/miR-590-5p/JAK2 axis in ASMC proliferation, migration, and apoptosis.

20.
Oncol Lett ; 22(3): 672, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34345297

RESUMO

The dysregulated expression of long non-coding RNA FTX transcript X inactive specific transcript regulator (FTX) has been reported to be involved in the tumorigenesis of multiple cancer types. However, to the best our knowledge, its function and clinical value in thyroid cancer remain unclear. The present study aimed to determine the potential role of FTX in the development and progression of thyroid cancer. Reverse transcription-quantitative PCR analysis revealed that the expression levels of FTX were upregulated in thyroid cancer tissues and cell lines compared with those in normal tissues and cell lines, respectively. Survival analysis demonstrated that patients with upregulated FTX expression had a lower survival rate. Functional experiments revealed that the knockdown of FTX inhibited proliferation, cell cycle progression, migration and invasion, and induced apoptosis in thyroid cancer cells, while FTX overexpression accelerated proliferation, migration and invasion, and alleviated apoptosis in thyroid cancer cells. In addition, FTX knockdown significantly inhibited tumor growth in vivo. Furthermore, in thyroid cancer cells, FTX was identified to positively regulate the expression levels of TGF-ß1, which is known to play an important regulatory role in tumor metastasis. In conclusion, the findings of the present study suggested that FTX may accelerate thyroid cancer progression via regulation of cellular activities, including cell proliferation, migration, invasion and apoptosis. Thus, FTX may represent a potential biomarker for the diagnosis, treatment and prognosis of thyroid cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...